Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Acta sci., Biol. sci ; 42: e52115, fev. 2020. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1460955

ABSTRACT

Esterases are enzymes that present good potential for industrial applications since they catalyze the formation or cleavage of ester bonds in water-soluble substrates, and sorghumseeds can represent an alternative source of this enzyme. The extraction of esterase from sorghumseeds is an economical alternative to obtain an enzyme of great interest. Esterases may improve the quality or accelerate the maturation of cheeses, cured bacon and fermented sausages and may also resolve racemic mixtures. Recently, seed esterases have been the focus of much attention as biocatalysts. In some cases, these enzymes present advantages over animal and microbial lipases due to some quite interesting features such as specificity and low cost, being a great alternative for their commercial exploitation as industrial enzymes The esterase studied here was extracted from sorghumseeds and some of its biochemical properties determined using synthetic substrates (p-nitrophenyl butyrate, caprylate, laurate and palmitate). The enzyme presented optimum activity at pH 8.0 and was stable in all the pH ranges studied. The optimum temperature for its activity was 40ºC but it showed low stability at this temperature (40% relative activity). The values derived for Km and Vmax were 0.67mM and 125 U.mg-1, respectively, obtained using p-nitrophenyl butyrate as the substrate. The enzyme showed an increase in activity when K2HPO4was added to the reaction medium, but the ions Mn2+, CO+, Hg+and Fe2+strongly inhibited the enzyme activity. This enzyme showed a preference for the hydrolysis of short chain fatty acids. The characteristics of sorghumesterase are very similar to those of the microbial esterases used in detergent processing.


Subject(s)
Esterases/analysis , Esterases/chemistry , Sorghum/chemistry , Alkalies
2.
Mem. Inst. Oswaldo Cruz ; 107(4): 437-449, June 2012. ilus
Article in English | LILACS | ID: lil-626435

ABSTRACT

The use of chemical insecticides continues to play a major role in the control of disease vector populations, which is leading to the global dissemination of insecticide resistance. A greater capacity to detoxify insecticides, due to an increase in the expression or activity of three major enzyme families, also known as metabolic resistance, is one major resistance mechanisms. The esterase family of enzymes hydrolyse ester bonds, which are present in a wide range of insecticides; therefore, these enzymes may be involved in resistance to the main chemicals employed in control programs. Historically, insecticide resistance has driven research on insect esterases and schemes for their classification. Currently, several different nomenclatures are used to describe the esterases of distinct species and a universal standard classification does not exist. The esterase gene family appears to be rapidly evolving and each insect species has a unique complement of detoxification genes with only a few orthologues across species. The examples listed in this review cover different aspects of their biochemical nature. However, they do not appear to contribute to reliably distinguish among the different resistance mechanisms. Presently, the phylogenetic criterion appears to be the best one for esterase classification. Joint genomic, biochemical and microarray studies will help unravel the classification of this complex gene family.


Subject(s)
Animals , Esterases/classification , Insecticide Resistance/genetics , Inactivation, Metabolic/genetics , Esterases/chemistry , Esterases/genetics , Phylogeny
3.
Rev. colomb. biotecnol ; 12(1): 124-140, jul. 2010. tab, graf, ilus
Article in Spanish | LILACS | ID: lil-590651

ABSTRACT

Las lipasas son enzimas con propiedades funcionales muy interesantes que permiten su utilización práctica en diversos campos de las industrias agroquímica, farmacéutica, de detergentes y alimentaria, así como en química fina. Entre las aplicaciones más importantes de estas moléculas se encuentran: la resolución de mezclas racémicas, la obtención de compuestos ópticamente puros y la bioconversión de principios activos. En este trabajo se presenta una amplia revisión del tema, que abarca desde aspectos estructurales y funcionales de las lipasas, hasta la inmovilización de estas enzimas mediante adsorción interfacial y su empleo en biotecnología.


Lipases are enzymes with very interesting functional properties that allow their practical use in different fields of Agro-Chemical, Pharmaceutical and Food industries, as well as in Fine Chemistry. Among the most relevant applications of these molecules are: racemic mixtures resolution, obtainment of optically pure compounds and bioconversion of active principles. In this work a broad review of this topic is presented. This includes since structural and functional features of lipases until the immobilization of these enzymes by interfacial adsorption and their employment in biotechnology.


Subject(s)
Monoacylglycerol Lipases/biosynthesis , Monoacylglycerol Lipases/physiology , Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/chemistry , Monoacylglycerol Lipases/chemical synthesis , Monoacylglycerol Lipases , Esterases/biosynthesis , Esterases/genetics , Esterases/chemistry , Esterases
4.
Rio de Janeiro; s.n; 2010. 96 p. ilus, tab.
Thesis in Portuguese | LILACS | ID: lil-597345

ABSTRACT

Todos os agrupamentos humanos que se organizam para o trabalho usam rios, lagos ou lagoas como depósitos para a decomposição de matéria indesejável. A contaminação do meio aquático por herbicidas e agrotóxicos derivados de práticas agrícolas se tornou, faz tempo, um problema de importância mundial. Precisamos de informações detalhadas sobre a bioquímica da intoxicação de peixes nativos para avaliarmos quais os efeitos de agrotóxicos sobre os processos bioquímicos que mantêm o ciclo de vida dos peixes em águas do Brasil. Organofosfatos, que são agrotóxicos de uso disseminado, podem interargir com as B-esterases butirilcolinesterase (EC 3.1.1.8) e carboxilesterase (EC 3.1.1.1) presentes no fígado e no plasma. Tanto a butirilcolinesterase (BChE) como a carboxilesterase (CarbE), se presentes em concentrações relativamente elevadas, agem como limpadores estequiométricos ("scavengers" moleculares) por ligarem o átomo de fósforo do grupo P=O com a hidroxila de uma serina presente nos seus sítios ativos. Em nossos resultados observamos que curimbatá possui a CarbE plasmática (IC50 74 nM) mais sensível ao organofosfato metilparaoxon quando comparado ao pacu (IC50 691 nM). Isolamos CarbE dos plasmas de curimbatá e pacu. Piavassu não possui uma atividade expressiva de CarbE no sangue, por isso não a isolamos. O tipo e a distribuição das esterases nos tecidos são particulares da espécie. Curimbatá tem alta atividade de CarbE no fígado (237,8 U.g-1) e no sangue (29,85 U.mL-1), pacu é dotado de alta atividade de BChE (134,0 U.g-1) e CarbE (149,6 U.g-1) no fígado, mas o piavussu conta apenas com a BChE do sangue (17,87 U.g-1). Este arsenal enzimático foi suficiente para proteger as AChE de cérebro, músculo e coração das três espécies e evitar a sua intoxicação leve por 0,2 mg metilparation/L. A abordagem cinético-bioquímica para conhecer a inibição das esterases presentes nos tecidos de diferentes espécies de peixes por agrotóxicos é uma ferramenta útil...


Every human group who organizes to work together uses rivers, lakes or ponds as places in which undesirable substances are deposited for decomposition. Contamination of the aquatic environment with herbicides and pesticides derived from agrucultural practices has become a problem of global importance since a long ago. We need detailed information on the biochemistry of the poisoning of native fish to assess the effects of pesticides on the biochemical processes that maintain fishes' life cycle in waters of Brazil. Organophosphates, which are widely used pesticides, can interact with the B-esterases butyrylcholinesterase (EC 3.1.1.8) and carboxylesterase (EC 3.1.1.1) in plasma and liver. Butyrylcholinesterase (BChE) and carboxylesterase (CarbE) in relatively high concentrations act as stoichiometric scavengers by linking the phosphorus atom of the P=O group with the serine's hydroxyl they have in their active site. Our results show that the CarbE of curimbata plasma (IC50 74 nm) is more sensitive to the organophosphate metilparaoxon than CarbE of pacu plasma (IC50 691 nm). We isolated CarbE from curimbata and pacu's plasma. Piavussu does not have an expressive activity of CarbE in plasma, so we did not isolate it. The type and distribution of esterases in tissues are peculiar to a species. Curimbata has high CarbE activity in the liver (237.8 U.g-1) and blood (29.85 U.mL-1), pacu is equipped with high activities of BChE (134.0 U.g-1) and CarbE (149.6 U.g-1) in the liver and piavussu relies only on BChE of blood (17.87 U.g-1). This enzymatic arsenal was sufficient to protect AChE from brain, muscle and heart of the three species and protect them against mild intoxication by methilparathion (0.2 mg/L). The biochemical kinetic approach that allows understanding of the inhibition of the esterases in tissues of different fish species is a good tool capable of anticipating the harmful consequences of these drugs.


Subject(s)
Animals , Acetylcholinesterase/toxicity , Butyrylcholinesterase/toxicity , Carboxylesterase/toxicity , Insecticides, Organophosphate/adverse effects , Fishes/growth & development , Fishes/blood , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Pesticides/adverse effects , Pesticides/toxicity , Esterases/antagonists & inhibitors , Esterases/chemistry , Water Pollution
5.
Rev. colomb. biotecnol ; 11(1): 7-19, jul. 2009. tab, ilus, graf
Article in English | LILACS | ID: lil-590627

ABSTRACT

En el presente trabajo se optimizaron las condiciones de extracción de esterasas con actividad en interfaces, a partir de la anémona marina Stichodactyla helianthus y del camarón peneido Litopenaeus vannamei Las esterasas interfaciales, cuya presencia en estas especies había sido informada previamente, presentan características funcionales que las hacen muy atractivas para su empleo industrial. Los homogenados de los animales se trataron con los detergentes Tritón X-100, Tween 20 y Tween 80 en dos concentraciones cada uno: la Concentración Micelar Crítica (CMC) y la mitad de ésta. Además se empleó NaCl 0,5 mol/L y n-butanol a las proporciones 5, 10 y 20%. Cada variante fue comparada con el método tradicional de extracción con agua destilada, que fue tomado como control. Los mejores resultados se obtuvieron empleando n-butanol al 20%, para recuperar las actividades esterasa y fosfolipasa, y al 10%, en el aislamiento de la actividad lipasa. La efectividad de este solvente en el aislamiento de estas enzimas con afinidad por las interfaces lípido/agua, pudiera estar dada por su capacidad para romper los agregados entre estas moléculas y causar la desorción de las mismas a los restos de membrana y tejidos presentes en la preparación.


Interfacial esterases present great functional versatility, making them very attractive molecules for industrial applications. The conditions for extracting interfacial esterases previously detected in the sea anemone Stichodactyla helianthus and the shrimp Litopenaeus vannamei were optimised in this work. Animal homogenates were treated with Triton X-100, Tween 20 and Tween 80 detergents at two different concentrations: critical micellar concentration (CMC) and half of that concentration; 0.5 mol/L NaCl and n-butanol at 5%, 10% and 20% v/v ratios were also tested. Each procedure was compared to the control extraction method using distilled water. The best results were obtained with 20% n-butanol for recovering esterase and phospholipase activity whilst 10% n-butanol extraction was the most effective for lipase activity isolation. This solvent’s suitability for isolating interface-activated enzymes could be explained by its ability to dissociate biomolecule aggregates and cause enzyme desorption from the membranes and tissues remaining in the preparation.


Subject(s)
Monoacylglycerol Lipases/administration & dosage , Monoacylglycerol Lipases/toxicity , Esterases/chemistry , Esterases/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL